A. In the century, the C everything was made of divide".	Greek philosopher units called atoms. "N	, sai lot able
Greek's Model: Picture	Definition: (you write)	
B said every elematoms.	ment is made up of	calle
1. was a solid	<u> </u>	
2. Can't be		
3. Atoms cantoge	etner to form	
Dalton's Model: Picture	Definition: (you write)	
C. The mo	odel, by Thompson (1897), said	there w
Soup with	Definition: (you write)	•
B. Bohr's model showed	traveling in fixed	aroun
B. Bohr's model_showed the nucleus (like	traveling in fixed around the sun).	_aroun
B. Bohr's model_showed the nucleus (like 1. Electrons are on an	traveling in fixed around the sun). 	_aroun

C. Rutherford's model_showed that_____all the____of the atoms was concentrated in _______surrounded by ______. Electrons were in specific orbit planes

Rutherford's Model: Picture	Definition: (you write)
D. Wave Theory shows electrons but tend to be in	follow fixed
1. electrons cloud is	times larger than diamete
1. electrons cloud is of nucleus.	times larger than diamete
1. electrons cloud is of nucleus. Wave theory (electron cloud): Picture	times larger than diameter

- Atoms the _____ of matter that still has the _p II. of the element.

 - A. Protons have an
 B. Neutrons _____an electrical charge.
 - C. Electrons have an_____
 - 1. Has a very mass.
 - D. Nucleus Contains the _____ and _____
 - 1. Contains most of the <u>m</u> of the atom.

E. Orbital: place you find the <u>e</u>_____.

G. Energy Levels: levels where electrons _____ in the atom.

Energy Level	Number (#) of electrons
1^{st}	
2 nd	
3 rd	

F: Valence Electrons: any and all electrons in the ______ energy level.

Picture:

III. Periodic Law = properties of ______tend to change in a regular when elements are arranged in order of increasing ______ number (______ of the protons in an atom).

A. Periods or Rows = _____rows of elements that contain increasing numbers of <u>p</u> and <u>e</u> .

Atomic #>	3	4	5	6	7	8
<u>P #</u>						

- 1. Elements are classified as_____
- 2. Elements in a period or row_____have similar properties.
- 3. Each row in the periodic table _____when an _____energy level is filled.

Apple

- **B.** Group or Families = _____ columns in the table
 - 1. Elements in the same group (family) have s properties.
 - 2. Elements in same group have the <u>s</u>number of <u>e</u>

in their outer shell.

- IV. Atomic Number the number of p in an atom.
 - A. The number of protons _____ the type of e____
 - **B.** The number of protons also e the number of electrons in a atom.
- Mass number the number of <u>p</u> and <u>n</u> in an atom. V.
 - A. Atomic mass unit (amu) _____ of measurement for atomic particles.
 1. A p _____ has a mass of __amu.

 - 2. A <u>n</u> has a mass of amu.
 - 3. Electron mass is n added in to the Atomic Mass of an atom.

Protons of Li =
Electrons of Li =
Neutrons of Li =

n A. Different isotopes have <u>d</u> properties. **B.** Number of neutrons equals atomics m — atomic n Sodium Name of Element Number of protons in sodium = _____ 11 **Atomic Number** Number of electrons in sodium = _____ Na -**Element Symbol** Number of protons + neutrons = 22.990 **Atomic Mass** Number of neutrons in sodium = VII. Ions = When an atom l or g and electron. A. Cation: an ion with a <u>p</u> (+) charge. B. Anion: an ion with a <u>n</u> (-) charge. e e e (l_____, it becomes positive (+)

VIII. Metals = elements that are <u>s</u>, can be <u>s</u> or <u>s</u>, and are good <u>c</u> of heat and electricity.

e (g_____, it becomes negative (-)

e

A. Alkali metals = highly _____ metals located in Group_.
1. These metals have only _____ electron in their outer shell.

- 2. Due to being so <u>r</u>, these metals are <u>found in nature as</u> pure elements are always <u>c</u>.
- B. Alkaline-earth metals = _____ most reactive metals and found in Group ____.
 - 1. These metals have <u>electrons their outer shell</u>.
- C. Transition metals = metals located in <u>Groups</u>.
 - 1. These metals t from very m to almost non .
- IIX. Nonmetals = elements that are <u>n</u> shiny, <u>c</u> be stretched or shaped, and are <u>p</u> conductors of heat and electricity.

- A. Most nonmetals are located on the <u>r</u> side of the Periodic Table.
- B. Halogens = <u>h</u> reactive nonmetals in Group _____.
 - 1. These nonmetals have ____electrons in their outer shells.
- C. Noble Gases = the _____ gaseous elements located in Group ____.
 - 1. These elements ______ usually form compounds.
 - 2. Have a <u>f</u>outer shell.
- IX. Metalloids = have properties of _____ and _____. A. Semiconductors = these elements are able to <u>c</u> heat and e under certain conditions (only six of them).

CIM BENCHMARK

Describe properties of elements and their relationship to the periodic table.

Eligible content:

*Explain atoms and their base components (protons, neutrons, and electrons) as a basis for all matter.

*Read and interpret the periodic table, recognizing the relationship of the chemical and physical properties of the elements to their position on the periodic table.

*Recognize that the historical development of atomic theory demonstrates how scientific knowledge changes over time, and how those changes have had an impact on society.