Chapter 111 \&12:
 Motion and Force
 Motion, pgs. 252-258

\qquad

1. Reference Frame $=$
2. Speed $=$ \qquad
Formula \quad Speed $=$
Units $\quad \mathrm{m} / \mathrm{hr}=\frac{\text { meters }}{\text { hour }}$ or $\quad \mathrm{cm} / \mathrm{sec}=\frac{\text { centimeters }}{\text { seconds }}$
3. Constant Speed = \qquad
4. Average Speed $=$

Trials	Distance	Time	Speed
$\mathbf{1}$			
2			
3			
Average			

My walking speed is:
5. Velocity $=$ \qquad
6. Momentum $=$ \qquad

Formula	momentum kg m/sec
Units	

7. Law of Conservation of Momentum = \qquad
8.2 Acceleration and Force, pgs 259-267
8. Acceleration = \qquad
\qquad

Positive Acceleration -
Negative Acceleration -
Acceleration is indicated
Formula \quad Acceleration =
Units $\quad \mathrm{m} / \mathrm{sec} / \mathrm{sec}$ or $\mathrm{m} / \mathrm{sec}^{2}$

9. Force $=$ \qquad
10. Balanced Forces $=$ \qquad
\qquad

11. Unbalanced Forces $=$ \qquad
\qquad

4.-.-.-.-.- \longrightarrow
12. Friction $=$ \qquad
\qquad

The amount of friction depends on:
1.
2.

Types of friction:

1. Sliding friction $=$
2. Rolling friction $=$
\qquad
$\underline{\text { Air Resistance }}=$ \qquad

Amount of air resistance depends

If there is no air resistance,
\qquad
13. Gravity= \qquad

The larger the mass,
The greater the distance,
8.3 Newton's Laws of Motion, pgs. 268-274
14. Newton's First Law (The Law of Inertia)= \qquad
\qquad

Inertia =

Projectile Motion=
15. Centripetal Force $=$

Acceleration can be a

Sun's gravity exerts a centripetal force
16. Newton's Second Law of Motion= \qquad

Formula	Force $=$
Units	$\mathrm{kg} \mathrm{m} / \mathrm{sec}^{2}=\mathrm{kg} \quad \mathrm{x} \quad \mathrm{m} / \mathrm{sec}^{2}$
Force units $=$	$\mathrm{kg} \mathrm{m} / \mathrm{sec}^{2}=\mathrm{N}$ or Newtons

17. Free Fall $=$ \qquad
18. Gravitational Acceleration =

All objects fall

19. Weight $=$

Weight is a

Formula
Units
gravitational force or weight =
Newtons (N) $=\mathbf{k g} \quad \mathbf{x} \mathrm{m} / \mathrm{sec}^{2}$

Weight and mass are not the same thing:

Weight is the

Mass is the

20. Terminal Velocity $=$
21. Newton's Third Law = \qquad
CIM BENCHMARKS
